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ABSTRACT 
The appearance of anomalies during the operation of industrial assets can point to the presence of 
degradations and failures, which over time lead to undesired behavior, loss of operation conditions and the 
final breakdown of the system. Predictive maintenance techniques are in charge of monitoring the status of 
the systems in order to carry out the detection of these anomalies in incipient phases, allowing to schedule 
maintenance tasks in an optimal way. This paper presents a predictive maintenance solution for naval assets 
based on artificial intelligence techniques as Machine Learning. For this, the information from the sensors 
(temperatures, pressures, etc.) collected in real time by the vessels and transmitted through the control 
center is used. The system developed (SOPRENE) is able to predict the occurrence of different failure modes 
or abnormal operating conditions from a historical data of an engine on board of our warships. In addition, 
the use of this system is scalable to large fleets, the solution has been implemented using the Spark 
distributed environment in order to facilitate distributed computation of predictions. 
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1. INTRODUCTION 

The cost of maintenance represents an important part of the operating costs in industry. In some cases, as in 
the metallurgical industry, these costs can amount to 15% -60% of total production costs. Furthermore, of 
these, a third of the investment is wasted as a result of unnecessary or incorrect activities [1]. However, 
maintenance is crucial as the failure of a system can lead to huge financial costs. 

In the past, the impossibility of handling large and continuous data flows has led to the use, in many cases, of 
statistical techniques. Today's predictive maintenance, however, follows a more advanced philosophy: 
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Instead of relying on these industry statistics (e.g. mean time between failures) to schedule maintenance 
activities, real-time monitoring of the system is carried out to determine its status and real condition. The 
current computing capacity allows both processing larger amounts of data, as well as the use of more 
sophisticated techniques to carry out predictions, detection of abnormal conditions and a possible diagnosis 
of the system. Therefore, predictive maintenance can be understood as preventive maintenance [2] based on 
the current state or condition of the system and future predictions made from an operation history. 

This research work presents the development of a predictive maintenance system framed within the 
SOPRENE project in its application to navy ship engines. The proposed system has analyzed and used 
machine learning techniques in distributed environments. In this sense, the considered methodologies can be 
divided according to what was stated by Ran et al. [3]: 

1.1 Categories based on purpose 
Based on the optimization criteria that could be followed, we can distinguish between different methods: 

• Cost minimization: the metric used is usually the system's Remaining Useful Life (RUL), although it 
is also possible to define an ad hoc cost model [4]. 

• Reliability maximization and asset availability: this metrics are calculated in order to estimate the 
probability of a system to be in a normal operating state given a time interval [5] and the probability 
that the system is operational [6]. 

• Multi-objective optimization: it seeks to optimize multiple metrics simultaneously to achieve a better 
balance between objectives. In addition to the aforementioned, they use metrics such as risk, security 
or viability. Generally, it is impossible to obtain optimal values for all objectives at the same time, so 
a wide variety of multiobjective models have been developed [7] - [9]. 

1.2 Categories depending on the approximation 
Based on the type of approximation used, we can distinguish between: 

• Knowledge-based approaches. Expert knowledge and deductive reasoning processes are used. There 
are approximations based on ontologies [10], on rules [11] or on analytical models that try to link 
the physical processes of a system with mathematical models, such as Gaussian models [12], models 
of linear systems [13] or Markov models [14]. 

• Approaches based on classic machine learning techniques (machine learning, ML). Artificial neuron 
networks [15], decision trees [16] (including the Random Forest algorithm [17]) have been used. as 
well as vector support machines (SVM), both supervised [18] and unsupervised [19]. Finally, the 
nearest neighbor technique (k-NN) is one of the most common used methods for classifying failures 
[20], for predicting lifetime (RUL) [21] and early detection [22]. 

• Approaches based on deep learning. One of the most used are the Autoencoder Neural Networks, 
whose output layer seeks to reproduce the data presented in its input layer after having gone through 
a dimensional compression phase, allowing the creation of robust models against noise [23]. 
Recurrent neural networks (RNN) have also been used in litterature, based on Long Short Term 
Memory Networks (LSTM) cells [24], which can learn longer-term dependencies. These types of 
networks are very powerful for sequence analysis [25]. 

2. PROBLEM CONTEXTUALIZATION  

The application of predictive maintenance techniques to the naval assets or engines of the Spanish Armada’s 
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ships is defined by the installed monitoring system: The vessels considered in this study (BAM) record the 
values of nearly 5000 variables by unit (about 300 associated with an example engine), registered every 10 s 
(sampling frequency depends also on the variable), representing a wide variety of aspects physics of the 
same (e.g., gas temperature, pressure in the filters, etc), and with more than 10 years of registered operating 
data history for this kind of vessels. However, the recorded data show heterogeneous quality due to sensor 
failures (erroneous or missing values) or communication problems (non-uniform sampling frequencies). 
Secondly. There are three engine operating modes depending on the revolutions per minute (RPM) at which 
it works: engine off (RPM close to zero), engine idling (RPM close to a threshold µ) and engine normal 
operation (RPM greater than a threshold µ), having to characterize and filter the states of interest. 

Regarding the malfunctions in the data history, due to the extension of the files and their identification, 
manual labeling by expert is not feasible. Thus, there is no set of structured failure modes and, therefore, the 
detection of anomalies must be carried out in an unsupervised manner. To fill this gap, an FMECA (Failure 
Mode, Effects, and Criticality Analysis) analysis is used, which theoretically describes the failure modes that 
can occur over an engine (the variables or elements that intervene in these modes and their values. nominal, 
maximum and minimum). 

Finally, since the proposed solution should not analyze a single vessel, but a fleet, the management and 
control is carried out centrally (on land, at CESADAR, the Spanish Armada’s data center). Each ship sends 
the data recorded by its sensors to a central node where it is stored and processed. Since the datasets to be 
dealt with can be large, and for the system to be scalable to a large number of vessels, the system has to be 
distributed: the HDFS distributed file system has been used to store the data and the Apache Spark 
environment to train and run the models in a distributed way. 

3. PROPOSED SOLUTION 

The designed solution combines the solutions to several sub-problems. Thus, the general architecture is made 
up of four clearly defined blocks or tasks (see Figure 3-1): 

 

Figure 3-1. SOPRENE solution architecture: from Data Preprocessing to training and operation 
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3.1. Pre-processing module 
In order to train ML models it is necessary to have a robust and representative dataset of the different 
operating states of the engine or naval asset. The values measured by the system sensors are stored in CSV 
files into the HDFS system, however these data need to be pre-processed. Thus, in this block, the existence 
of missing values is checked, the sampling frequency is unified and a variable selection process is carried 
out: 

• Data loading: The flow begins by reading the dataset to be processed and stored in HDFS. 

• Data processing: In order to solve the problem of the low quality of the original data (section 3), two 
actions are carried out: 

1. Variables selection: of all the variables, those that show sufficient variability in their values 
will be used. This selection is carried out both automatically (discarding variables that have 
constant values) and manually, eliminating those selected by the user. 

2. Sampling frequency standardization: in order to avoid the second problem, it is necessary to 
homogenize the sampling frequency. Thus, a set is created from the initial data in which there 
is a simultaneous measurement for all the variables every 60 s. For this, the absence of values 
of the variables that present a lower frequency is filled with the last available and validated 
value. 

 

The processed data is stored in a consolidated and structured Hive database. 

• Data normalization: Since the values collected by the sensors oscillate in very different ranges for 
each variable, a normalization process is executed individually. The trained normalizer is stored in 
HDFS to be used in production with the arrival of new data. 

• Data preparation: To provide flexibility to the system, the user can establish the unit of the horizon 
with which to carry out the prediction (hours, days, weeks or months), so that the normalized data is 
temporarily grouped (eg if predictions are going to be made in days, the normalized data is grouped 
into a single data per day). In addition, before grouping the data, these are filtered based on the value 
of the RPM variable to eliminate those that correspond to moments of the engine off. 

3.2. Prediction module 
The main goal is to know the state of the engine at an instant in future time. In this way, to carry out a 
prediction from an instant in time ti, to a future instant that is distant from the horizon units of engine use 
time (ti + horizon), the system must receive the information collected by the sensors during the last 
window units of time before you (ti-window), defined next to the horizon by the user. Figure 3-2 shows a 
graphical representation of these concepts. 

 

Figure 3-2. Using a previous data window to carry out a prediction. 

The prediction methods available are: linear regression, and of LSTM and Elastic Net networks, as shown in 
Table 3-1. After training the models, they are stored in HDFS to be used in production in the same way as 
the normalizers. 
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Table 3-1. Mean squared errors (MSE) obtained by the algorithms using different data grouping 
modes: 1 data/day (D), 1 data/week (W) and 1 data/month (M). The prediction horizons used were 

5 and 10 time units. 

 
 

3.3. Anomaly detection module 
Once the prediction of the naval asset condition has been made (Figure 3-3), it is necessary to determine 
whether the condition corresponds to a normal value or not. With no tagged anomalies available, the 
detection process is performed unsupervised using an Autoencoder Neural Network. By means of the 
reconstruction error we can discern between normal data (low reconstruction error) and anomalous data 
(high errors). This value can be presented as the mean square error of all the input variables (a single value) 
or its decomposition, the error of each of the input variables or nodes of the network (Shadow area in Figure 
3-3). The objective, given a set of records, is to determine which are anomalous and which variables cause 
these anomalies, which is done in three sequential sub-phases: 

1. Detect anomalies: to determine which records are anomalous, a first filter is carried out using 
the mean square error. Based on a pre-calculated threshold error, the data that exceed it are 
classified as anomalous and the rest as normal. The user chooses whether the calculation of 
this threshold error is carried out by means of the interquartile range or by establishing a 
percentage of anomalous data in the set. 
 

2. Separate contributions: to determine which variables have been the cause of the appearance of 
the anomaly in the data classified as anomalous, the decomposition of the reconstruction error 
is used. Thus, it goes from a single global error to as many as variables make up the record, 
being able to sort the variables by their reconstruction error and automatically determine the 
contribution of each variable using the Elbow method [26]. 
 

3. Construct an anomaly mask: from the selection of the previous sub-phase, a matrix or output 
mask of dimensions mxn is constructed (m being the number of rows or records and n the 
number of columns or variables) in which the anomalous variables are marked with a one and 
normal variables with a zero. 
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Figure 3-3. Long-Short Term Memory Networks (LSTM) prediction output (red) versus the real 
value to be predicted (blue) for three attributes of the diesel engine for propulsion. X-axis 
represents normalized data coming from the BAM ship; Y-axis contains an ordered index. 

Shadowed area represents prediction error. 

3.4. Diagnostic module 
The diagnostic module is responsible for, based on the prediction and the anomaly detection mask, 
determining which failure modes may occur and their probability. To determine the probability of each 
failure mode it has been decided to use a supervised classification model based on neural networks (Figure 
3-4). Since there are no labeled datasets of all possible failure modes, an artificial data generator has been 
implemented to produce them from the theoretical characteristics of the failure modes included in the 
FMECA document (variables involved, nominal values, range stop values, etc.). Thus, the model is trained 
considering each of the failure modes as an output class, having as many neurons as motor variables in its 
input layer, and as many softmax as failure modes in its output layer. 
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Figure 3-4. Confusion matrix of the failures detected by the BAM’s engine alarm system 

versus the anomalies detected by the model. 

The classifier of failure modes is used in combination with the output mask of the anomaly detection module 
to carry out the diagnosis of the engine. This was used to limit the number of possible failure modes, 
omitting the failure modes in which all its variables involved have been considered normal. The output of 
this module (and end of the system) contains the identifier of the failure mode in the FMECA, the expected 
date on which the failure mode will occur and the probability / certainty associated with it (Figure 3-5). 

 
Figure 3-5. Example of system output for five failure modes (named with ID 125, 44, 78, 18 and 82) sorted 
temporally. Each row depicts the evolution of the probability of failure along the time. The points where the 
failure probability reaches its peak are marked with white dots. 

4. RESULTS 

Since there is no set of targets or reference values of abnormal operating conditions (conveniently structured 
for this purpose), it has not been possible to perform a quantitative evaluation of the system. The 
development of the different partial solutions that make up the final solution has been subject to a mostly 
qualitative evaluation by the experts of the organization involved: 

• Prediction: Filtering the data by RPM and grouping it considerably reduces the number of available 
examples. This disables models such as LSTM networks that require large amounts of data. In these 
scenarios, it has been seen that the simplest models report better results, being possible to make 
predictions up to 10 days / weeks / months with reasonable quality. 

• Anomaly detection: The results of the anomaly detector have been compared with the alarms 
recorded on the vessels over the four years. As can be seen in Figure 4-1, the model was able to 
detect most of these anomalies and even anticipate the occurrence of some of them. 

• Diagnosis: the generation of artificial datasets based on FMECA has made it possible to build 
classification models that determine which failure modes may occur (or abnormal operating 
conditions). However, this theoretical behavior of the engine does not always correspond to reality, 
since its operation may vary with the use, replacement or repair of parts. 
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Figure 4-1. Normalized comparison of the vessel alarms (in blue) with the autoencoder’s joint 
diagnostics for all failure modes. Data comes from a BAM ship. Y-axis represents the confidence 

given by the autoencoder. X-axis represents normalized data coming from the vessel. 

5. CONCLUSIONS 

The solution developed makes it possible to predict the occurrence of the different failure modes or abnormal 
operating conditions described in the FMECA of a warship’s propulsion engine. The tasks of prediction and 
detection of anomalies are totally independent, so the latter can be carried out both for future moments (data 
from the prediction), present (real time) or past (a posteriori analysis). The greatest responsibility lies with 
the prediction module since subsequent operations start from the output of this module. To provide it with 
flexibility, a wide range of methods are provided in SOPRENE, easily scalable if needed, while allowing the 
user to configure the prediction parameters to obtain the most appropriate results in each situation. The 
system is highly configurable and its use can be extrapolated to other warship’s assets with similar 
characteristics. Its computation is distributed, so prediction, detection and diagnosis times are low, while the 
biggest bottleneck is the pre-processing task, which is not performed in a distributed manner. 
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